Enfermedades dermatológicas por exposición al petróleo: una revisión narrativa de la literatura

Autores/as

  • Damary S. Jaramillo-Aguilar Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca. Cuenca, Ecuador. https://orcid.org/0000-0002-8676-2473
  • Adrián Esteban Cañar-Calderón Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca. Cuenca, Ecuador.
  • Lirys Yulexi Feijoo-Rojas Escuela de Medicina, Facultad de Ciencias Médicas, Universidad Católica de Cuenca. Cuenca, Ecuador. https://orcid.org/0009-0008-1725-3334
  • Digna Isabel Flores-Carpio Escuela de Medicina, Facultad de Ciencias Médicas, Universidad Católica de Cuenca. Cuenca, Ecuador.
  • Tania Alexandra Guamán-Caguana Escuela de Medicina, Facultad de Ciencias Médicas, Universidad Católica de Cuenca. Cuenca, Ecuador. https://orcid.org/0009-0001-5191-4262
  • Adriana Raquel Cordero-Calderón Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca. Cuenca, Ecuador. https://orcid.org/0009-0002-6952-5406

DOI:

https://doi.org/10.20453/rmh.v36i2.5848

Palabras clave:

contaminación por petróleo, petróleo, industria del petróleo y gas, enfermedades de la piel

Resumen

Pocos estudios han profundizado en los efectos dermatológicos de la exposición al petróleo. El objetivo de esta revisión narrativa de la literatura fue describir las dermopatías más frecuentes en este contexto. Se realizó una búsqueda bibliográfica en las bases de datos PubMed, Scopus, SciELO y LILACS, desde 2019 a 2024, tanto en inglés como en español. Se seleccionaron 52 publicaciones para su síntesis y revisión. El petróleo está compuesto principalmente por hidrocarburos. Los hidrocarburos aromáticos policíclicos generan una serie de efectos en la piel, a través de procesos biológicos que comprenden estrés oxidativo, inflamación y defectos de la barrera cutánea. El acné, cáncer, dermatitis, quemaduras, alteraciones de la pigmentación y otros trastornos no especificados fueron las dermopatías que más se reportaron. Las patologías ungueales y del cabello también fueron identificadas. Finalmente, la exposición al petróleo da origen a condiciones patológicas específicas de la piel y exacerba otras preexistentes. Se requieren de más estudios epidemiológicos y experimentales para comprender completamente los mecanismos fisiopatológicos subyacentes. 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Damary S. Jaramillo-Aguilar, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca. Cuenca, Ecuador.

       

  • Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca. Cuenca, Ecuador.

Adrián Esteban Cañar-Calderón , Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca. Cuenca, Ecuador.

   

  • Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca. Cuenca, Ecuador.

Lirys Yulexi Feijoo-Rojas , Escuela de Medicina, Facultad de Ciencias Médicas, Universidad Católica de Cuenca. Cuenca, Ecuador.

     

  • Escuela de Medicina, Facultad de Ciencias Médicas, Universidad Católica de Cuenca. Cuenca, Ecuador.

Digna Isabel Flores-Carpio , Escuela de Medicina, Facultad de Ciencias Médicas, Universidad Católica de Cuenca. Cuenca, Ecuador.

       

  • Escuela de Medicina, Facultad de Ciencias Médicas, Universidad Católica de Cuenca. Cuenca, Ecuador.

Tania Alexandra Guamán-Caguana , Escuela de Medicina, Facultad de Ciencias Médicas, Universidad Católica de Cuenca. Cuenca, Ecuador.

         

  • Escuela de Medicina, Facultad de Ciencias Médicas, Universidad Católica de Cuenca. Cuenca, Ecuador.

Adriana Raquel Cordero-Calderón, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca. Cuenca, Ecuador.

           

  • Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca. Cuenca, Ecuador.

Citas

Abolhasani R, Araghi F, Tabary M, Aryannejad A, Mashinchi B, Robati RM. The impact of air pollution on skin and related disorders: A comprehensive review. Dermatol Ther. 2021;34(2):e14840. doi: 10.1111/dth.14840.

Roberts W. Air pollution and skin disorders. Int J Womens Dermatol. 2020;7(1):91-7. doi: 10.1016/j.ijwd.2020.11.001.

Abdel-Shafy HI, Mansour MSM. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt J Pet. 2016;25(1):107-23. doi: 10.1016/j.ejpe.2015.03.011.

Jin H, Lin Z, Pang T, Wu J, Zhao C, Zhang Y, et al. Effects and mechanisms of polycyclic aromatic hydrocarbons in inflammatory skin diseases. Sci Total Environ. 2024; 925:171492. doi: 10.1016/j.scitotenv.2024.171492.

Dec M, Arasiewicz H. Aryl hydrocarbon receptor role in chronic inflammatory skin diseases: a narrative review. Postepy Dermatol Alergol. 2024;41(1):9-19. doi: 10.5114/ada.2023.135617.

Lin L, Dai Y, Xia Y. An overview of aryl hydrocarbon receptor ligands in the Last two decades (2002–2022): A medicinal chemistry perspective. Eur J Med Chem. 2022; 244:114845. doi: 10.1016/j.ejmech.2022.114845.

Hopf NB, Spring P, Hirt-Burri N, Jimenez S, Sutter B, Vernez D, et al. Polycyclic aromatic hydrocarbons (PAHs) skin permeation rates change with simultaneous exposures to solar ultraviolet radiation (UV-S). Toxicol Lett. 2018; 287:122-30. doi: 10.1016/j.toxlet.2018.01.024.

Selley RC, Sonnenberg SA. The Physical and Chemical Properties of Petroleum. En: Selley RC, Sonnenberg SA, editores. Elements of Petroleum Geology. 4ta Edición. Boston, EE.UU Academic Press; 2022. p. 15-42.

Chaudhuri UR. Crude Petroleum Oil. En: Chaudhuri UR, editor. Fundamentals of Petroleum and Petrochemical Engineering. Boca Raton, EE.UU: CRC Press, Taylor and Francis Group. 2011. p. 24.

Coutinho DM, França D, Vanini G, Gomes AO, Azevedo DA. Understanding the molecular composition of petroleum and its distillation cuts. Fuel. 2022;311:122594. doi: 10.1016/j.fuel.2021.122594.

Vandana, Priyadarshanee M, Mahto U, Das S. Mechanism of toxicity and adverse health effects of environmental pollutants. En: Das S, Dash HR, editores. Microbial Biodegradation and Bioremediation. 2da Edición. Chennai, India: Elsevier Inc.2022. p. 33-53. doi: 10.1016/C2020-0-01871-2.

Patel AB, Shaikh S, Jain KR, Desai C, Madamwar D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front Microbiol. 2020; 11:562813. doi: 10.3389/fmicb.2020.562813.

Hussar E, Richards S, Lin ZQ, Dixon RP, Johnson KA. Human Health Risk Assessment of 16 Priority Polycyclic Aromatic Hydrocarbons in Soils of Chattanooga, Tennessee, USA. Water Air Soil Pollut. 2012;223(9):5535-48. doi: 10.1007/s11270-012-1265-7.

Leung MHY, Tong X, Bastien P, Guinot F, Tenenhaus A, Appenzeller BMR, et al. Changes of the human skin microbiota upon chronic exposure to polycyclic aromatic hydrocarbon pollutants. Microbiome. 2020;8(1):1-17. doi: 10.1186/s40168-020-00874-1.

Nwankwo C, Arewa A, Theophilus S, Esenowo V. Analysis of accidents caused by human factors in the oil and gas industry using the HFACS-OGI framework. Int J Occup Saf Ergon. 2022;28(3):1642-54. doi: 10.1080/10803548.2021.1916238.

Parasram V. Severe Work-Related Injuries in the Oil and Gas Extraction Industry — 32 Federal Occupational Safety and Health Administration Jurisdictions, United States, January 2015–July 2022. Morb Mortal Wkly Rep. 2024; 73:104-9. doi: 10.15585/mmwr.mm7305a3.

Savage N, Doherty Z, Singer Y, Menezes H, Cleland H, Goldie SJ. A Review of Petrol Burns in Australia and New Zealand. J Burn Care Res. 2023;44(5):1162-8. doi: 10.1093/jbcr/irad008.

Sreedharan S, Menezes H, Cleland H, Goldie SJ. Petrol-related burn injuries presenting to the Victorian Adult Burns Service. Australas J Plast Surg. 2019;2(2):45-9. doi: 10.34239/ajops.v2n2.153.

Lin TC, Wu RX, Chiu CC, Yang YS, Lee Y, Lin JC, et al. The clinical and microbiological characteristics of infections in burn patients from the Formosa Fun Coast Dust Explosion. J Microbiol Immunol Infect. 2018;51(2):267-77. doi: 10.1016/j.jmii.2016.08.019.

Fadeyibi I, Jewo P, Opoola P, Babalola O, Ugburo A, Ademiluyi S. Burns and fire disasters from leaking petroleum pipes in Lagos, Nigeria: An 8-year experience. Burns. 2011;37(1):145-52. doi: 10.1016/j.burns.2010.06.012.

Kelly D, Rizzo J, Yun H, Blyth D. Microbiology and clinical characteristics of industrial oil burns. Burns. 2020;46(3):711-7. doi: 10.1016/j.burns.2019.10.007.

Carlson LC, Rogers TT, Kamara TB, Rybarczyk MM, Leow JJ, Kirsch TD, et al. Petroleum pipeline explosions in sub-Saharan Africa: A comprehensive systematic review of the academic and lay literature. Burns. 2015;41(3):497-501. doi: 10.1016/j.burns.2014.08.013.

Fabbrocini G, Kaya G, Silverio PC, De Vita V, Kaya A, Fontao F, et al. Aryl Hydrocarbon Receptor Activation in Acne Vulgaris Skin: A Case Series from the Region of Naples, Italy. Dermatology. 2015;231(4):334-8. doi: 10.1159/000439402.

Napolitano M, Fabbrocini G, Martora F, Picone V, Morelli P, Cataldo P. Role of Aryl Hydrocarbon Receptor Activation in Inflammatory Chronic Skin Diseases. Cells. 2021;10(12):3559-3559. doi: 10.3390/cells10123559.

Demir B, Çiçek D. Occupational Acne. En: Acne and Acneiform Eruptions de Kartal SP & Gönül M. IntechOpen; 2017. doi: 10.5772/64905.

Karpova A, Filimonov S, Semenikhin V. Industrial ecology and skin diseases. Russ J Occup Health Ind Ecol. 2022;62(11):781-4. doi: 10.31089/1026-9428-2020-60-6-387-391.

Kemp J, Luckett-Chastain LR, Calhoun KN, Frempah B, Schartz TR, Harty LE, et al. Evaluation of skin irritation following weathered crude oil exposure in two mouse strains. Toxicol Ind Health. 2020;36(10):788-99. doi: 10.1177/0748233720944354.

Tang KT, Chen PA, Lee MR, Lee MF, Chen YH. The relationship between exposure to polycyclic aromatic hydrocarbons and adult atopic dermatitis. Asian Pac J Allergy Immunol. 2020;7. doi: 10.12932/AP-210720-0926.

Wang C, Tsai JD, Wan L, Lin CL. Association of Exposure to Hydrocarbons Air Pollution with Incidence of Atopic Dermatitis in Children. Ital J Pediatr. 2021;47(1):202. doi: 10.1186/s13052-021-01157-7.

Hu Y, Zhang Y. Unbalanced Aryl Hydrocarbon Receptor Expression in Peripheral and Lesional T Cell Subsets of Atopic Dermatitis. Clin Cosmet Investig Dermatol. 2023;(16):3661-71. doi: 10.2147/CCID.S430915.

Contestable JJ. Jet Fuel–Associated Occupational Contact Dermatitis. Mil Med. 2017;182(3):e1870-3. doi: 10.7205/MILMED-D-16-00217.

Milam EC, Nassau S, Banta E, Fonacier L, Cohen DE. Occupational Contact Dermatitis: An Update. J Allergy Clin Immunol Pract. 2020;8(10):3283-93. doi: 10.1016/j.jaip.2020.08.004.

Furue M, Tsuji G. Chloracne and Hyperpigmentation Caused by Exposure to Hazardous Aryl Hydrocarbon Receptor Ligands. Int J Environ Res Public Health. 2019;16(23):4864. doi: 10.3390/ijerph16234864.

Chan TK, Bramono D, Bourokba N, Krishna V, Wang ST, Neo BH, et al. Polycyclic aromatic hydrocarbons regulate the pigmentation pathway and induce DNA damage responses in keratinocytes, a process driven by systemic immunity. J Dermatol Sci. 2021;104(2):83-94. doi: 10.1016/j.jdermsci.2021.09.003.

Niu S, Colosio C, Carugno M, Adisesh A. Diagnostic and exposure criteria for occupational diseases. Guidance notes for diagnosis and prevention of the diseases in the ILO List of Occupational Diseases (revised 2010). Ginebra, Suiza: International Labour Organization (ILO); 2022. p. 8-327.

Onyije FM, Hosseini B, Togawa K, Schüz J, Olsson A. Cancer Incidence and Mortality among Petroleum Industry Workers and Residents Living in Oil Producing Communities: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2021;18(8):4343. doi: 10.3390/ijerph18084343.

Misra N, Marrot L. In Vitro Methods to Simulate Pollution and Photo-Pollution Exposure in Human Skin Epidermis. Methods Mol Biol. 2020;2150:227-41. doi: 10.1007/7651_2020_279.

Liu FC, Grimsrud TK, Veierød MB, Robsahm TE, Ghiasvand R, Babigumira R, et al. Ultraviolet radiation and risk of cutaneous melanoma and squamous cell carcinoma in males and females in the Norwegian Offshore Petroleum Workers cohort. Am J Ind Med. 2021;64(6):496-510. doi: 10.1002/ajim.23240.

Kriech AJ, Schreiner CA, Osborn LV, Riley A. Assessing cancer hazards of bitumen emissions - a case study for complex petroleum substances. Crit Rev Toxicol. 2018;48(2):121-42. doi: 10.1080/10408444.2017.1391170.

Hidaka T, Fujimura T, Aiba S. Aryl Hydrocarbon Receptor Modulates Carcinogenesis and Maintenance of Skin Cancers. Front Med. 2019;6:194-194. doi: 10.3389/fmed.2019.00194.

Khatatbeh M, Alzoubi K, Khabour O, Al-Delaimy W. Adverse Health Impacts of Living Near an Oil Refinery in Jordan. Env Health Insights. 2020;14:1178630220985794. doi: 10.1177/1178630220985794.

D’Andrea MA, Reddy GK. Crude Oil Spill Exposure and Human Health Risks. J Occup Environ Med. 2014;56(10):1029-41. doi: 10.1097/JOM.0000000000000217.

Orisakwe OE. Crude oil and public health issues in Niger Delta, Nigeria: Much ado about the inevitable. Environ Res. 2021;194:110725. doi: 10.1016/j.envres.2021.110725.

Ferguson A, Solo-Gabriele H, Mena K. Assessment for oil spill chemicals: Current knowledge, data gaps, and uncertainties addressing human physical health risk. Mar Pollut Bull. 2020;150:110746. doi: 10.1016/j.marpolbul.2019.110746.

De Vecchi R, da Silveira Carvalho Ripper J, Roy D, Breton L, Germano Marciano A, Bernardo de Souza PM, et al. Using wearable devices for assessing the impacts of hair exposome in Brazil. Sci Rep. 2019;9(1):13357. doi: 10.1038/s41598-019-49902-7.

Naudin G, Bastien P, Mezzache S, Trehu E, Bourokba N, Appenzeller BMR, et al. Human pollution exposure correlates with accelerated ultrastructural degradation of hair fibers. Proc Natl Acad Sci U A. 2019;116(37):18410-5. doi: 10.1073/pnas.1904082116.

Umarova G, Batyrova G, Tlegenova Z, Kononets V, Balmagambetova S, Umarov Y, et al. Essential Trace Elements in Scalp Hair of Residents across the Caspian Oil and Gas Region of Kazakhstan. Toxics. 2022;10(7):364. doi: 10.3390/toxics10070364.

Bamber AM, Hasanali SH, Nair AS, Watkins SM, Vigil DI, Van Dyke M, et al. A Systematic Review of the Epidemiologic Literature Assessing Health Outcomes in Populations Living near Oil and Natural Gas Operations: Study Quality and Future Recommendations. Int J Environ Res Public Health. 2019;16(12):2123. doi: 10.3390/ijerph16122123.

Wikramanayake T, Borda L, Miteva N, Paus R. Seborrheic dermatitis—Looking beyond Malassezia. Exp Dermatol. 2019;28(9):991-1001. doi: 10.1111/exd.14006.

Rathod DG, Sonthalia S. Spoon Nails. En: StatPearls. Treasure Island, EE. UU:StatPearls Publishing; 2023.

Yazdanirad S, Mousavi S, Moradirad R, Zeiniodini M. Investigating the Prevalence of Fungal Infections among Operating Personnel at a Petroleum Refinery Complex on Warm and Humid Conditions. Int J Occup Hyg. 2019;11(4):312-22.

Abor P, Naab F, Daniels A, Abuosi A. Occupational Health and Safety in the Oil and Gas Industry. En: Abor JY, Karimu A, editores. Sustainability Management in the Oil and Gas Industry: Emerging and Developing Country Perspectives. Nueva York, EE. UU:Routledge; 2023. p. 17. doi: 10.4324/9781003309864.

Descargas

Publicado

2025-06-30

Cómo citar

1.
Jaramillo-Aguilar DS, Cañar-Calderón AE, Feijoo-Rojas LY, Flores-Carpio DI, Guamán-Caguana TA, Cordero-Calderón AR. Enfermedades dermatológicas por exposición al petróleo: una revisión narrativa de la literatura. Rev Méd Hered [Internet]. 30 de junio de 2025 [citado 19 de octubre de 2025];36(3):268-76. Disponible en: http://44.198.254.164/index.php/RMH/article/view/5848

Número

Sección

TEMAS DE REVISION