Use of assisted technology in dermatology: Points to keep in mind
DOI:
https://doi.org/10.20453/rmh.v36i1.5731Downloads
References
Baxi V, Edwards R, Montalto M, Saha S. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod Pathol. 2022;35(1):23–32. doi: 10.1038/s41379-021-00919-2
Esteva A. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;2(7639):115–8. doi: 10.1038/nature21056
Brinker TJ, Hekler A, Enk AH, Klode J, Hauschild A, Berking C, et al. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur J Cancer. 2019;113:47–54. doi: 10.1016/j.ejca.2019.04.001
Zhao S, Xie B, Li Y, Zhao X, Kuang Y, Su J, et al. Smart identification of psoriasis by images using convolutional neural networks: a case study in China. J Eur Acad Dermatol Venereol. 2020;34(3):518–24. doi:10.1111/jdv.15965
Rat C, Hild S, Sérandour JR, Gaultier A, Quereux G, Dreno B, et al. Use of smartphones for early detection of melanoma: Systematic review. J Med Internet Res. 2018;20(4):7–8. doi: 10.2196/jmir.9392
Chan S, Reddy V, Myers B, Thibodeaux Q, Brownstone N, Liao W. Machine Learning in Dermatology: Current Applications, Opportunities, and Limitations. Dermatol Ther (Heidelb). 2020;10(3):365–86. doi: 10.1007/s13555-020-00372-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Los autores

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors assign their rights to the RMH so that may disseminate the article through the means at their disposal. The journal will provide forms of affidavit of authorship and authorization for the publication of the article, which shall be submitted with the manuscript. Authors retain the right to share, copy, distribute, perform and publicly communicate their article, or part of it, mentioning the original publication in the journal.