Determination of the standardized uptake value (SUV) of 18F-FDG in PET/CT in the simulation of lesions less than or equal to 10 millimeters in air and lung mannequin

Authors

DOI:

https://doi.org/10.20453/rmh.v36i3.7044

Keywords:

Positron-Emission Tomography, Fluorodeoxyglucose F18, lung lesion

Abstract

Positron emission tomography (PET) images contribute to the metabolic evaluation of lesions at all stages using the radiopharmaceutical 18F-FDG (Fluorine-18-fluorodeoxyglucose); oncology is its main indication. The most used parameter is the standardized uptake value (SUV). Studies suggest further research into the metabolic quantification of lesions ≤ 10 mm in PET. Objective: To determine the accuracy of SUV in the simulation of lesions ≤ 10 mm in air and lung mannequin with point radioactive sources of  18F-FDG. Methods: Experimental study based on 36 simulations in air and 36 simulations in a lung mannequin. Measures of central tendency were described, and the medians of SUVPET and SUV theoretical in air and lung mannequin were compared using the non-parametric Wilcoxon-Mann-Whitney test. Results: SUV accuracy in simulations of lesions ≤10 mm showed systematic overestimation, greather in air than in the lung mannequin, exceeding the 5% uncertainty recommended by the International Atomic Energy Agency (IAEA). Conclusions: The accuracy percentage of SUVPETmax, SUVPETmed and SUVPETmin values presented a value greather than 5%; the estimates showed significant deviation for this size range, making SUV quantification difficult for lesions smaller than 10mm.

Downloads

Download data is not yet available.

Author Biographies

Itala Sequeiros-Palomino, Universidad Peruana Cayetano Heredia, Lima, Perú .

          

Félix Alexander Neyra-Aguilar, Universidad Peruana Cayetano Heredia. Lima, Perú. / Hospital Nacional Luis Negreiros Vega. Lima, Perú.

           

Walter Junior Meza-Salas, Universidad Nacional Federico Villareal. Lima, Perú. / Hospital Nacional Edgardo Rebagliati Martins. Lima, Perú.

         

Raúl Edwin Correa-Ñaña,

              

References

Sequeiros Palomino I. Determinación del Valor Estandarizado de Captación (SUV) en simulación de lesiones menores o iguales a 10 milímetros en aire y maniquí de pulmón con 18F-FDG PET/CT [Internet] [Tesis para optar por el título profesional de Licenciado en Tecnología Médica en la especialidad de Radiología]. [Lima, Perú.]: Universidad Peruana Cayetano Heredia; 2022 [citado el 9 de febrero de 2025]. Disponible en: https://repositorio.upch.edu.pe/bitstream/handle/20.500.12866/11654/Determinacion_SequeirosPalomino_Itala.pdf?sequence=1&isAllowed=y

International Agency for Research on Cancer, World Health Organization. Cancer Today. Estimated age-standardized incidence rates (World) in 2020, lung, both sexes, all ages in Peru,Ecuador, Uruguay y Paraguay. [Internet]. 2020 [citado el 10 de mayo de 2021]. Disponible en: https://gco.iarc.fr/today/online-analysis-map?v=2020&mode=population&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=15&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=10&gr

International Agency for Research on Cancer, World Health Organization. Cancer Today. Estimated age-standardized incidence rates (World) in 2020, lung, both sexes, all ages in Hungary [Internet]. Wiley-Liss Inc.; 2020 [citado el 10 de mayo de 2021]. Disponible en: https://gco.iarc.fr/today/online-analysis-map?v=2020&mode=population&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=15&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=10&gr

Morales Guzmán-Barron R, Amorín Kajatt E, Ledesma Vásquez R, Casavilca Zambrano S. PET/CT in Staging and Treatment Evaluation of Non-Small Cell Lung Cancer. Oncol Treat Discov. 2023 May 17;1(1):1–9. doi: 10.26689/otd.v1i1.4950

Vaupel P, Multhoff G. Revisiting the Warburg effect: historical dogma versus current understanding. J Physiol. 2021 Mar 1; 599(6):1745–57. doi: 10.1113/JP278810.

Gispert JD, Reig S, Martinez-Lázaro R, Pascau J, Penedo M, Desco M. Cuantificación en estudios PET: métodos y aplicaciones. Rev Real Acad Cienc Exactas Fís Natur [Internet]. 2002 [citado el 11 de febrero de 2025]; 96(1):13. Disponible en: https://www.researchgate.net/publication/233413373_Cuantificacion_en_estudios_PET_Metodos_y_aplicaciones

Hassan Gamal G. The usefulness of 18F-FDG PET / CT in follow-up and recurrence detection for patients with lung carcinoma and its impact on the survival outcome. Egypt J Radiol Nucl Med. 2021; 52–121. doi: 10.1186/s43055-021-00504-2.

Larici AR, Farchione A, Franchi P, Ciliberto M, Cicchetti G, Calandriello L, et al. Lung nodules: Size still matters. Eur Respir Rev. 2017 Oct 28;26(146):1–16. doi: 10.1183/16000617.0025-2017

American Cancer Society. 2022 [Citado el 12 de enero de 2022]. p. 1–4 Can Lung Cancer Be Found Early ? Disponible en: https://www.cancer.org/cancer/lung-cancer/detection-diagnosis-staging/detection.html#:~:text=Usually symptoms of lung cancer. This may delay the diagnosis.

Hagi T, Nakamura T, Sugino Y, Matsubara T, Asanuma K, Sudo A. Is FDG-PET/CT useful for diagnosing pulmonary metastasis in patients with soft tissue sarcoma? Anticancer Res [Internet]. 2018 [Citado el 10 de febrero de 2025];38(6):3635–9. Disponible en: https://ar.iiarjournals.org/content/38/6/3635.long

Kusma J, Young C, Yin H, Stanek JR, Yeager N, Aldrink JH. Pulmonary Nodule Size <5 mm Still Warrants Investigation in Patients with Osteosarcoma and Ewing Sarcoma. J Pediatr Hematol Oncol. 2017;39(3):184–7. doi: 10.1097/MPH.0000000000000753.

Yusuf Emre E. Limits of Tumor Detectability in Nuclear Medicine and PET. Mol Imaging Radionucl Ther. 2012;21(2):23–8. doi: 10.4274/Mirt.138.

Brendle C, Kupferschläger J, Nikolaou K, La Fougère C, Gatidis S, Pfannenberg C. Is the standard uptake value (SUV) appropriate for quantification in clinical PET imaging? - Variability induced by different SUV measurements and varying reconstruction methods. Eur J Radiol. 2015;84(1):158–62. doi: 10.1016/j.ejrad.2014.10.018

Bouyeure-Petit AC, Chastan M, Edet-Sanson A, Becker S, Thureau S, Houivet E, et al. Clinical respiratory motion correction software (reconstruct, register and averaged-RRA), for 18F-FDGPET- CT: Phantom validation, practical implications and patient evaluation. Br J Radiol. 2017;90(1070):1–12. doi: 10.1259/bjr.20160549.

Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009 May;50 Suppl 1:11S-20S. doi: 10.2967/jnumed.108.057182.

Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA. 2001 Feb 21;285(7):914-24. doi: 10.1001/jama.285.7.914.

Moorhead JE, Rao PV, Anusavice KJ. Guidelines for experimental studies. Dental Materials [Internet]. 1994 [Citado el 9 de febrero de 2025];10(1):45–51. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/0109564194900213?via%3Dihub

Sardanelli F. Trends in radiology and experimental research. Eur Radiol Exp [Internet]. 2017 [Citado el 11 de febrero de 2025];1(1):1–7. Disponible en: https://eurradiolexp.springeropen.com/articles/10.1186/s41747-017-0006-5

Berghmans T, Dusart M, Paesmans M, Hossein-Foucher C, Buvat I, Castaigne C, et al. Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol. 2008 Jan;3(1):6-12. doi: 10.1097/JTO.0b013e31815e6d6b.

Graham MM, Peterson LM, Hayward RM. Comparison of simplified quantitative analyses of FDG uptake. Nucl Med Biol. 2000 Oct;27(7):647-55. doi: 10.1016/s0969-8051(00)00143-8.

Meirelles GS, Kijewski P, Akhurst T. Correlation of PET/CT standardized uptake value measurements between dedicated workstations and a PACS-integrated workstation system. J Digit Imaging. 2007 Sep;20(3):307-13. doi: 10.1007/s10278-006-0861-8.

Khan Academy. Volumen de una esfera [Internet]. 2021 [Citado el 26 de junio de 2021]. Disponible en: https://es.khanacademy.org/science/ap-biology/cell-structure-and-function/cell-size/v/volume-of-a-sphere

Capintec Inc. QC Anthropomorphic Phantoms for Nuclear Medicine [Internet]. 2021 [Citado el 8 de febrero de 2025]. Disponible en: https://mls.dk/wp-content/uploads/2017/11/Side-114-132-QC-Phantoms.compressed.pdf

Fluke. Fluke Biomedical. Phantom Selection Guide [Internet]. 2021 [Citado el 8 de febrero de 2025]. Disponible en: https://www.flukebiomedical.com/sites/default/files/resources/phantom_sel

CIRS. Cirs Product Catalog [Internet]. 2021 [Citado el 8 de febrero de 2025]. Disponible en: https://www.cirsinc.com/wp-content/uploads/2019/05/CIRS_FLC_041119-.pdf

Mawlawi OR, Kemp BJ, Jordan DW, Campbell JM, Halama JR, Massoth RJ, et al. PET/CT Acceptance Testing and Quality Assurance. The Report of AAPM Task Group 126. October 2019 [Internet]. American Association of Physicists in Medicine. 2019 [Citado el 11 de febrero de 2025]. Disponible en: https://www.aapm.org/pubs/reports/RPT_126.pdf

Moores BM. Test Phantoms and Optimisation in Diagnostic Radiology and Nuclear Medicine: Proceedings of a Discussion Workshop Held in Würzburg (FRG), 15 - 17 June 1992 [Internet]. Nuclear Technology Publishing; 1993 [Citado el 11 de enero de 2022]. 402 p. Disponible en: https://books.google.com.pe/books?id=J2tRAAAAMAAJ&q=radiation+protection+dosimetry+test+phantoms+and+optimization+in+diagnostic+radiology+and+nuclear+medicine&dq=radiation+protection+dosimetry+test+phantoms+and+optimization+in+diagnostic+radiology+and+nuc

IAEA. Quality Assurance for Radioactivity Measurement in Nuclear Medicine. Technical Reports Series N° 454 [Internet]. 2006 [Citado el 11 de febrero de 2025]. 1–96 p. Disponible en: https://www.iaea.org/publications/7480/quality-assurance-for-radioactivity-measurement-in-nuclear-medicine

Adler S, Seidel J, Choyke P, Knopp M V., Binzel K, Zhang J, et al. Minimum lesion detectability as a measure of PET system performance. EJNMMI Phys. 2017 Dec;4(1):13. doi: 10.1186/s40658-017-0179-2.

Diederich S, Semik M, Winter F, Scheld HH, Roos N, Bongartz G. Helical CT of pulmonary nodules in patients with extrathoracic malignancy: CT-surgical correlation. AJR Am J Roentgenol. 1999 Feb;172(2):353-60. doi: 10.2214/ajr.172.2.9930781.

Zhu D, Wang Y, Wang L, Chen J, Byanju S, Zhang H, et al. Prognostic value of the maximum standardized uptake value of pre-treatment primary lesions in small-cell lung cancer on 18F-FDG PET/CT: a meta-analysis. Acta Radiol. 2018 Sep;59(9):1082-1090. doi: 10.1177/0284185117745907.

Mosleh-Shirazi MA, Nasiri-Feshani Z, Ghafarian P, Alavi M, Haddadi G, Ketabi A. Tumor volume-adapted SUVN as an alternative to SUVpeak for quantification of small lesions in PET/CT imaging: a proof-of-concept study. Jpn J Radiol [Internet]. 2021 Aug 1 [Citado el 11 de febrero de 2025];39(8):811–23. Disponible en: https://link.springer.com/article/10.1007/s11604-021-01112-w

Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010 Dec;31(6):496-505. doi: 10.1053/j.sult.2010.10.001.

Published

2025-09-30

How to Cite

1.
Sequeiros-Palomino I, Neyra-Aguilar FA, Meza-Salas WJ, Correa-Ñaña RE. Determination of the standardized uptake value (SUV) of 18F-FDG in PET/CT in the simulation of lesions less than or equal to 10 millimeters in air and lung mannequin. Rev Méd Hered [Internet]. 2025 Sep. 30 [cited 2025 Oct. 19];36(3):201-1. Available from: http://44.198.254.164/index.php/RMH/article/view/7044