A surdeferentação dentária como fator etiológico das disfunções gustativas em ratos Wistar machos

Autores

  • Alejandro Gutiérrez Patiño Paúl Hospital Nacional Edgardo Rebagliati Martins. Lima, Perú. Universidad Nacional Mayor de San Marcos, Facultad de Odontología. Lima, Perú.

DOI:

https://doi.org/10.20453/reh.v34i1.5314

Palavras-chave:

extração dentária, percepção gustativa, cânula, ratos Wistar

Resumo

Objetivo: Avaliar a influência da surdeferentação dentária (DD) no sentido do paladar de ratos Wistar machos através do teste de reatividade gustativa (TRG). Materiais e métodos: Estudo experimental, seguindo as diretrizes ARRIVE 2.0, realizado em dez ratos Wistar. Estes foram aleatorizados e atribuídos a um grupo de controlo ou a um grupo experimental, tendo sido implantadas cânulas para TRG em ambos os grupos. No grupo experimental, foi efetuada a exodontia dos três molares superiores do lado direito. No segundo ou terceiro dia, iniciou-se a TRG (dia 1) com a infusão de 1 M de uma substância doce (ingestiva) e 3 mM de uma substância amarga (aversiva), na velocidade de 1 mL em 1 minuto. Esse TRG foi repetido nos dias 7, 14 e 21. As respostas ingestivas e aversivas foram avaliadas durante 1 minuto. Os dados foram processados no pacote estatístico SPSS v. 26. O teste U de Mann-Withney foi usado para identificar diferenças; e a magnitude da diferença foi calculada usando o r de Rosenthal. Resultados: As respostas ingestivas à sacarose foram obtidas no dia 1 (p > 0,05); foram obtidas respostas diferentes no dia 7 (p = 0,05), no dia 14 (p = 0,009) e no dia 21 (p = 0,009). Também se obtiveram respostas aversivas ao benzoato de denatónio (BD) nos dias 1, 7 e 21 (p > 0,05); estas foram diferentes no dia 14 (p = 0,05). Conclusões: Foi encontrada uma diferença nas respostas ingestivas medianas à sacarose e nas respostas aversivas ao BD em ratos Wistar machos como resultado da DD.

Downloads

Não há dados estatísticos.

Biografia do Autor

Alejandro Gutiérrez Patiño Paúl, Hospital Nacional Edgardo Rebagliati Martins. Lima, Perú. Universidad Nacional Mayor de San Marcos, Facultad de Odontología. Lima, Perú.

       

Referências

Deems DA, Doty RL, Settle RG, Moore-Gillon V, Shaman P, Mester AF, et al. Smell and taste disorders, a study of 750 patients from the University of Pennsylvania Smell and Taste Center. Arch Otolaryngol Head Neck Surg [Internet]. 1991; 117(5): 519-528. Disponible en: https://doi.org/10.1001/archotol.1991.01870170065015

Ribeiro G, Torres S, Fernandes AB, Camacho M, Branco TL, Martins SS, et al. Enhanced sweet taste perception in obesity: joint analysis of gustatory data from multiple studies. Front Nutr [Internet]. 2022; 9: 1028261. Disponible en: https://doi.org/10.3389/fnut.2022.1028261

Loper HB, La Sala M, Dotson C, Steinle N. Taste perception, associated hormonal modulation, and nutrient intake. Nutr Rev [Internet]. 2015; 73(2): 83-91. Disponible en: https://doi.org/10.1093/nutrit/nuu009

Murtaza B, Hichami A, Khan AS, Ghiringhelli F, Khan N. Alteration in taste perception in cancer: causes and strategies of treatment. Front Physiol [Internet]. 2017; 8: 134. Disponible en: https://doi.org/10.3389/fphys.2017.00134

Jipu R, Șerban IL, Hurjui LL, Ion H, Tărniceriu CC, Statescu C, et al. Taste sensitivity variations in different systemic diseases. Rom J Oral Rehabil [Internet]. 2020; 12(2): 212-219. Disponible en: https://rjor.ro/taste-sensitivity-variations-in-different-systemic-diseases/

Medeiros A, Studart E, De Barros P, Silva PG, De Lima BB, Carvalho FSR, et al. Clinical investigation of gustatory and neurosensory alterations following mandibular third molar surgery: an observational prospective study. Clin Oral Investig [Internet]. 2019; 23(7): 2941-2949. Disponible en: https://doi.org/10.1007/s00784-018-02798-5

Anand R, Prabhu D, Manodh P, Devadoss P, Aparna M, Sundaram R. Short-term evaluation of gustatory changes after surgical removal of mandibular third molar - A prospective randomized control trial. J Oral Maxillofac Surg [Internet]. 2018; 76(2): 258-266. Disponible en: https://doi.org/10.1016/j.joms.2017.06.028

Hotta M, Endo S, Tomita H. Taste disturbance in two patients after dental anesthesia by inferior alveolar nerve block. Acta Otolaryngol [Internet]. 2002; 122(4): 94-98. Disponible en: https://doi.org/10.1080/00016480260046463

Ahn YJ, Kim SW, Kim ME, Kim KS. Effect of inferior alveolar nerve block anesthesia on taste threshold. J Oral Med Pain [Internet]. 2007; 32(2): 177-185. Disponible en: https://koreascience.kr/article/JAKO200715536393950.page

Boucher Y, Berteretche M-V, Farhang F, Arvy M-P, Azérad J, Faurion A. Taste deficits related to dental deafferentation: an electrogustometric study in humans. Eur J Oral Sci [Internet]. 2006; 114: 456-464. Disponible en: https://doi.org/10.1111/j.1600-0722.2006.00401.x

Jou YT. Dental deafferentation and brain damage: a review and a hypothesis. Kaohsiung J Med Sci [Internet]. 2018; 34(4): 231-237. Disponible en: https://doi.org/10.1016/j.kjms.2018.01.013

Mostafa S, Hakam H, El-Motayam A. Gustatory dysfunction in relation to circumvallate papilla's taste buds structure upon unilateral maxillary molar extraction in Wistar rats: an in vivo study. F1000Research [Internet]. 2019; 8: 1667. Disponible en: https://doi.org/10.12688/f1000research.19684.1

Stanbouly D, Zeng Q, Jou YT, Chuang SK. Edentulism (missing teeth) and brain central nervous system (CNS) deafferentation: a narrative review. Front Oral Maxillofac Med [Internet]. 2024; 6: 8. Disponible en: https://dx.doi.org/10.21037/fomm-21-117

Berridge K. ‘Liking’ and ‘wanting’ food rewards: Brain substrates and roles in eating disorders. Physiol Behav [Internet]. 2009; 97(5): 537-550. Disponible en: https://doi.org/10.1016%2Fj.physbeh.2009.02.044

Schier LA, Spector AC. The functional and neurobiological properties of bad taste. Physiol Rev [Internet]. 2019; 99(1): 605-663. Disponible en: https://doi.org/10.1152%2Fphysrev.00044.2017

Hintiryan H, Hayes UL, Chambers KC. Intraoral cheek fistulae: a refined technique. Lab Anim [Internet]. 2006; 40(4): 456-464. Disponible en: https://doi.org/10.1258/002367706778476479

Berridge K, Grill HJ, Norgren R. Relation of consummatory responses and preabsorptive insulin release to palatability and learned taste aversions. J Comp Physiol Psychol [Internet]. 1981; 95(3): 363-382. Disponible en: https://doi.org/10.1037/h0077782

Grill HJ, Schwartz GJ, Travers JB. The contribution of gustatory nerve input to oral motor behavior and intake-based preference. I. Effects of chorda tympani or glossopharyngeal nerve section in the rat. Brain Res [Internet]. 1992; 573(1): 95-104. Disponible en: https://doi.org/10.1016/0006-8993(92)90117-R

Parker LA. Conditioned suppression of drinking: A measure of the CR elicited by a lithium-conditioned flavor. Learn Motiv [Internet]. 1980; 11(4): 538-559. Disponible en: https://doi.org/10.1016/0023-9690(80)90032-6

Parker LA. Rewarding drugs produce taste avoidance, but not taste aversion. Neurosci Biobehav Rev [Internet]. 1995; 19(1): 143-157. Disponible en: https://doi.org/10.1016/0149-7634(94)00028-y

Spector AC, Breslin P, Grill HJ. Taste reactivity as a dependent measure of the rapid formation of conditioned taste aversion: a tool for the neural analysis of taste-visceral associations. Behav Neurosci [Internet]. 1988; 102(6): 942-952. Disponible en: https://doi.org/10.1037//0735-7044.102.6.942

Zecchin KG, Da Silva Jorge R, Jorge J. A new method for extraction of mandibular first molars in rats. Braz J Oral Sci [Internet]. 2007; 6(21): 1344-1348. Disponible en: https://tspace.library.utoronto.ca/bitstream/1807/57998/1/os07018.pdf

Luo B, Pang Q, Jiang Q. Tooth loss causes spatial cognitive impairment in rats through decreased cerebral blood flow and increased glutamate. Arch Oral Biol [Internet]. 2019; 102: 225-230. Disponible en: https://doi.org/10.1016/j.archoralbio.2019.05.004

Yoneda N, Noiri Y, Matsui S, Kuremoto K, Maezono H, Ishimoto T, et al. Development of a root canal treatment model in the rat. Sci Rep [Internet]. 2017; 7(1): 3315. Disponible en: https://doi.org/10.1038/s41598-017-03628-6

Aguirre-Siancas EE, Lam-Figueroa NM. Efecto de la masticación sobre la memoria y aprendizaje espacial en ratones adultos y seniles. Rev Chil Neuro-Psiquiat [Internet]. 2019; 57(2): 149-157. Disponible en: http://dx.doi.org/10.4067/S0717-92272019000200149

Fukushima-Nakayama Y, Ono T, Hayashi M, Inoue M, Wake H, Ono T, et al. Reduced mastication impairs memory function. J Dent Res [Internet]. 2017; 96: 1058-1066. Disponible en: https://doi.org/10.1177/0022034517708771

Xiong H, Hägg U, Tang GH, Rabie ABM, Robinson W. The effect of continuous bite‑jumping in adult rats: a morphological study. Angle Orthod [Internet]. 2004; 74: 86‑92. Disponible en: https://doi.org/10.1043/0003-3219(2004)074%3C0086:teocbi%3E2.0.co;2

Beauboeuf R, Watari I, Saito E, Jui‑Chin H, Kubono‑Mizumachi M, Ono T. Alterations in the gustatory papillae after anterior bite plate insertion in growing rats. J Orthodont Sci [Internet]. 2019; 8(1): 4. Disponible en: https://doi.org/10.4103%2Fjos.JOS_68_18

Boucher Y, Simons C, Faurion A, Azérad J, Carstens E. Trigeminal modulation of gustatory neurons in the nucleus of the solitary tract. Brain Res [Internet]. 2003; 973: 265-274. Disponible en: https://doi.org/10.1016/s0006-8993(03)02526-5

Felizardo R, Boucher Y, Braud A, Carstens E, Dauvergne C, Zerari-Mailly F. Trigeminal projections on gustatory neurons of the nucleus of the solitary tract: a double-label strategy using electrical stimulation of the chorda tympani and tracer injection in the lingual nerve. Brain Res [Internet]. 2009; 1288: 60-68. Disponible en: https://doi.org/10.1016/j.brainres.2009.07.002

Faurion A. Sensory interactions through neural pathways. Physiol Behav [Internet]. 2006; 89: 44-46. Disponible en: https://doi.org/10.1016/j.physbeh.2006.05.008

Lin JY, Arthurs J, Reilly S. Conditioned taste aversion, drugs of abuse and palatability. Neurosci Biobehav Rev [Internet]. 2014; 45: 28-45. Disponible en: https://doi.org/10.1016%2Fj.neubiorev.2014.05.001

Bishnoi IR, Cloutier CJ, Tyson CD, Matic VM, Kavaliers M, Ossenkopp KP. Infection, learning, and memory: Focus on immune activation and aversive conditioning. Neurosci Biobehav Rev [Internet]. 2022; 142: 104898. Disponible en: https://doi.org/10.1016/j.neubiorev.2022.104898

Grill HJ, Norgren R. The taste reactivity test. II. Mimetic responses to gustatory stimuli in chronic thalamic and chronic decerebrate rats. Brain Res [Internet]. 1978; 143(2): 281-297. Disponible en: https://doi.org/10.1016/0006-8993(78)90569-3

King CT, Garcea M, Stolzenberg DS, Spector AC. Experimentally cross-wired lingual taste nerves can restore normal unconditioned gaping behavior in response to quinine stimulation. Am J Physiol Regul Integr Comp Physiol [Internet]. 2008; 294(3): 738-747. Disponible en: https://doi.org/10.1152/ajpregu.00668.2007

Grill HJ, Schwartz GJ. The contribution of gustatory nerve input to oral motor behavior and intake-based preference. II. Effects of combined chorda tympani or glossopharyngeal nerve section in the rat. Brain Res [Internet]. 1992; 573(1): 105-113. Disponible en: https://doi.org/10.1016/0006-8993(92)90118-s

King CT, Garcea M, Spector A. Glossopharyngeal nerve regeneration is essential for the complete recovery of quinine-stimulated oromotor rejection behaviors and central patterns of neuronal activity in the nucleus of the solitary tract in the rat. J Neurosci [Internet]. 2000; 20(22): 8426-8434. Disponible en: https://doi.org/10.1523%2FJNEUROSCI.20-22-08426.2000

Publicado

2024-03-31

Como Citar

1.
Patiño Paúl AG. A surdeferentação dentária como fator etiológico das disfunções gustativas em ratos Wistar machos. Rev Estomatol Herediana [Internet]. 31º de março de 2024 [citado 22º de dezembro de 2024];34(1):17-26. Disponível em: http://44.198.254.164/index.php/REH/article/view/5314

Edição

Seção

ARTIGO ORIGINAL